|
Algebra and Discrete Mathematics, 2015, том 19, выпуск 2, страницы 162–171
(Mi adm514)
|
|
|
|
RESEARCH ARTICLE
On inverse subsemigroups of the semigroup of orientation-preserving or orientation-reversing transformations
Paula Catarinoa, Peter M. Higginsb, Inessa Levic a Departamento de Matemática, Universidade de Trás-os-Montes e Alto Douro
b Department of Mathematical Sciences, University of Essex
c Department of Mathematics, Columbus State University
Аннотация:
It is well-known [16] that the semigroup $\mathcal{T}_n$ of all total transformations of a given $n$-element set $X_n$ is covered by its inverse subsemigroups. This note provides a short and direct proof, based on properties of digraphs of transformations, that every inverse subsemigroup of order-preserving transformations on a finite chain $X_n$ is a semilattice of idempotents, and so the semigroup of all order-preserving transformations of $X_n$ is not covered by its inverse subsemigroups. This result is used to show that the semigroup of all orientation-preserving transformations and the semigroup of all orientation-preserving or orientation-reversing transformations of the chain $X_n$ are covered by their inverse subsemigroups precisely when $n \leq 3$.
Ключевые слова:
semigroup, semilattice, inverse subsemigroup, strong inverse, transformation, order-preserving transformation, orientation-preserving transformation, orientation-reversing transformation.
Поступила в редакцию: 04.06.2014 Исправленный вариант: 04.08.2014
Образец цитирования:
Paula Catarino, Peter M. Higgins, Inessa Levi, “On inverse subsemigroups of the semigroup of orientation-preserving or orientation-reversing transformations”, Algebra Discrete Math., 19:2 (2015), 162–171
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm514 https://www.mathnet.ru/rus/adm/v19/i2/p162
|
|