|
Algebra and Discrete Mathematics, 2010, том 10, выпуск 2, страницы 64–86
(Mi adm49)
|
|
|
|
Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)
RESEARCH ARTICLE
Rees algebras, vertex covers and irreducible representations of Rees cones
L. A. Dupont, R. N. Villarreal Departamento de Matem'aticas,Centro de Investigacon y de Estudios, Avanzados del IPN,
Apartado Postal 14–740, 07000 Mexico City, D.F.
Аннотация:
Let $G$ be a simple graph and let $I_c(G)$ be its ideal of vertex covers. We give a graph theoretical description of the irreducible $b$-vertex covers of $G$, i. e., we describe the minimal generators of the symbolic Rees algebra of $I_c(G)$. Then we study the irreducible $b$-vertex covers of the blocker of $G$, i. e., we study the minimal generators of the symbolic Rees algebra of the edge ideal of $G$. We give a graph theoretical description of the irreducible binary $b$-vertex covers of the blocker of $G$. It is shown that they correspond to irreducible induced subgraphs of $G$. As a byproduct we obtain a method, using Hilbert bases, to obtain all irreducible induced subgraphs of $G$. In particular we obtain all odd holes and antiholes. We study irreducible graphs and give a method to construct irreducible $b$-vertex covers of the blocker of $G$ with high degree relative to the number of vertices of $G$.
Ключевые слова:
edge ideal, symbolic Rees algebras, perfect graph, irreducible vertex covers, irreducible graph, Alexander dual, blocker, clutter.
Поступила в редакцию: 01.03.2009 Исправленный вариант: 26.02.2011
Образец цитирования:
L. A. Dupont, R. N. Villarreal, “Rees algebras, vertex covers and irreducible representations of Rees cones”, Algebra Discrete Math., 10:2 (2010), 64–86
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm49 https://www.mathnet.ru/rus/adm/v10/i2/p64
|
Статистика просмотров: |
Страница аннотации: | 256 | PDF полного текста: | 119 | Первая страница: | 1 |
|