|
Algebra and Discrete Mathematics, 2010, том 10, выпуск 2, страницы 51–64
(Mi adm48)
|
|
|
|
RESEARCH ARTICLE
On modules over group rings of soluble groups with commutative ring of scalars
O. Yu. Dashkova 49010, Ukraine, Dniepropetrovsk, prospekt Gagarina, 72, Dniepropetrovsk National University, Department of Mathematics and Mechanics
Аннотация:
The author studies an $\mathbf RG$-module $A$ such that $\mathbf R$ is a commutative ring, $A/C_{A}(G)$ is not a Noetherian $\mathbf R$-module, $C_{G}(A)=1$, $G$ is a soluble group. The system of all subgroups $H\leq G$, for which the quotient modules $A/C_{A}(H)$ are not Noetherian $\mathbf R$-modules, satisfies the maximal condition. This condition is called the condition max–nnd. The structure of the group $G$ is described.
Ключевые слова:
a maximal condition on subgroups, a Noetherian module, a soluble group.
Образец цитирования:
O. Yu. Dashkova, “On modules over group rings of soluble groups with commutative ring of scalars”, Algebra Discrete Math., 10:2 (2010), 51–64
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm48 https://www.mathnet.ru/rus/adm/v10/i2/p51
|
Статистика просмотров: |
Страница аннотации: | 122 | PDF полного текста: | 80 | Первая страница: | 1 |
|