|
Algebra and Discrete Mathematics, 2014, том 17, выпуск 2, страницы 288–297
(Mi adm472)
|
|
|
|
RESEARCH ARTICLE
On the group of unitriangular automorphisms of the polynomial ring in two variables over a finite field
Yuriy Yu. Leshchenkoa, Vitaly I. Sushchanskyb a Institute of Physics, Mathematics and Computer Science, Bohdan Khmelnytsky National University of Cherkasy, Shevchenko blvd. 79, Cherkasy, Ukraine, 18031
b Institute of Mathematics, Silesian University of Technology, ul. Kaszubska 23, Gliwice, Poland, 44-100
Аннотация:
The group $U\!J_2(\mathbb{F}_q)$ of unitriangular automorphisms of the polynomial ring in two variables over a finite field $\mathbb{F}_q$, $q=p^m$, is studied. We proved that $U\!J_2(\mathbb{F}_q)$ is isomorphic to a standard wreath product of elementary Abelian $p$-groups. Using wreath product representation we proved that the nilpotency class of $U\!J_2(\mathbb{F}_q)$ is $c=m(p-1)+1$ and the $(k+1)$th term of the lower central series of this group coincides with the $(c-k)$th term of its upper central series. Also we showed that $U\!J_n(\mathbb{F}_q)$ is not nilpotent if $n \geq 3$.
Ключевые слова:
polynomial ring, unitriangular automorphism, finite field, wreath product, nilpotent group, central series.
Поступила в редакцию: 22.04.2014 Исправленный вариант: 22.04.2014
Образец цитирования:
Yuriy Yu. Leshchenko, Vitaly I. Sushchansky, “On the group of unitriangular automorphisms of the polynomial ring in two variables over a finite field”, Algebra Discrete Math., 17:2 (2014), 288–297
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm472 https://www.mathnet.ru/rus/adm/v17/i2/p288
|
Статистика просмотров: |
Страница аннотации: | 205 | PDF полного текста: | 89 | Список литературы: | 47 |
|