|
Algebra and Discrete Mathematics, 2014, том 17, выпуск 1, страницы 98–109
(Mi adm461)
|
|
|
|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
RESEARCH ARTICLE
On the subset combinatorics of $G$-spaces
Igor Protasova, Sergii Slobodianiukb a Department of Cybernetics, Kyiv National University, Volodymyrska 64, 01033, Kyiv, Ukraine
b Department of Mechanics and Mathematics, Kyiv National University, Volodymyrska 64, 01033, Kyiv, Ukraine
Аннотация:
Let $G$ be a group and let $X$ be a transitive $G$-space. We classify the subsets of $X$ with respect to a translation invariant ideal $J$ in the Boolean algebra of all subsets of $X$, introduce and apply the relative combinatorical derivations of subsets of $X$. Using the standard action of $G$ on the Stone-Čech compactification $\beta X$ of the discrete space $X$, we characterize the points $p\in\beta X$ isolated in $Gp$ and describe a size of a subset of $X$ in terms of its ultracompanions in $\beta X$. We introduce and characterize scattered and sparse subsets of $X$ from different points of view.
Ключевые слова:
$G$-space, relative combinatorial derivation, Stone-Čech compactification, ultracompanion, sparse and scattered subsets.
Поступила в редакцию: 15.01.2014 Исправленный вариант: 15.01.2014
Образец цитирования:
Igor Protasov, Sergii Slobodianiuk, “On the subset combinatorics of $G$-spaces”, Algebra Discrete Math., 17:1 (2014), 98–109
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm461 https://www.mathnet.ru/rus/adm/v17/i1/p98
|
Статистика просмотров: |
Страница аннотации: | 294 | PDF полного текста: | 78 | Список литературы: | 66 |
|