|
Algebra and Discrete Mathematics, 2014, том 17, выпуск 1, страницы 33–69
(Mi adm458)
|
|
|
|
Эта публикация цитируется в 21 научных статьях (всего в 21 статьях)
RESEARCH ARTICLE
Algorithmic computation of principal posets using Maple and Python
Marcin Gąsiorek, Daniel Simson, Katarzyna Zając Faculty of Mathematics and Computer, Science, Nicolaus Copernicus University, 87-100 Toruń, Poland
Аннотация:
We present symbolic and numerical algorithms for a computer search in the Coxeter
spectral classification problems. One of the main aims of the paper is to study finite posets $I$ that are principal, i.e., the rational symmetric Gram matrix
$G_I : = \frac{1}{2}[C_I+ C^{tr}_I]\in\mathbb{M}_I(\mathbb{Q})$
of $I$ is positive semi-definite of corank one, where $C_I\in\mathbb{M}_I(\mathbb{Z})$ is the incidence matrix of $I$.
With any such a connected poset $I$, we associate a simply laced Euclidean diagram
$DI\in \{\widetilde{\mathbb{A}}_n, \widetilde{\mathbb{D}}_n, \widetilde{\mathbb{E}}_6, \widetilde{\mathbb{E}}_7, \widetilde{\mathbb{E}}_8\}$, the Coxeter matrix
${\rm Cox}_I:= - C_I\cdot C^{-tr}_I$, its complex Coxeter spectrum ${\mathbf{specc}}_I$, and a reduced
Coxeter number $\check {\mathbf{c}}_I$.
One of our aims is to show that the spectrum ${\mathbf{specc}}_I$ of any such a poset $I$
determines the incidence matrix $C_I$ (hence the poset $I$) uniquely, up to a $\mathbb{Z}$-congruence.
By computer calculations, we find a complete list of principal one-peak posets $I$
(i.e., $I$ has a unique maximal element) of cardinality $\leq 15$, together with
${\mathbf{specc}}_I$, $\check {\mathbf{c}}_I$, the incidence defect $\partial_I:\mathbb{Z}^I \to\mathbb{Z}$, and
the Coxeter-Euclidean type $DI$. In case when $DI \in \{\widetilde{\mathbb{A}}_n, \widetilde{\mathbb{D}}_n , \widetilde{\mathbb{E}}_6, \widetilde{\mathbb{E}}_7, \widetilde{\mathbb{E}}_8\}$ and $n:=|I|$ is
relatively small, we show that given such a principal poset $I$, the incidence
matrix $ C_I$ is $\mathbb{Z}$-congruent with the non-symmetric Gram matrix $ \check
G_{DI}$ of $DI$, ${\mathbf{specc}}_I = {\mathbf{specc}}_{DI}$ and $\check {\mathbf{c}}_I= \check {\mathbf{c}}_{DI}$.
Moreover, given a pair of principal posets $I$ and $J$, with $|I|= |J| \leq 15$, the matrices $C_I$ and $C_J$
are $\mathbb{Z}$-congruent if and only if ${\mathbf{specc}}_I= {\mathbf{specc}}_J$.
Ключевые слова:
principal poset; edge-bipartite graph; unit quadratic form; computer algorithm; Gram matrix, Coxeter polynomial, Coxeter spectrum.
Поступила в редакцию: 08.08.2013 Исправленный вариант: 08.08.2013
Образец цитирования:
Marcin Gąsiorek, Daniel Simson, Katarzyna Zając, “Algorithmic computation of principal posets using Maple and Python”, Algebra Discrete Math., 17:1 (2014), 33–69
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm458 https://www.mathnet.ru/rus/adm/v17/i1/p33
|
Статистика просмотров: |
Страница аннотации: | 596 | PDF полного текста: | 94 | Список литературы: | 56 |
|