|
Algebra and Discrete Mathematics, 2013, том 16, выпуск 2, страницы 233–241
(Mi adm450)
|
|
|
|
RESEARCH ARTICLE
On derived $\pi$-length of a finite $\pi$-solvable group with supersolvable $\pi$-Hall subgroup
V. S. Monakhov, D. V. Gritsuk Department of Mathematics, Gomel Francisk Skorina State University, Gomel, Belarus
Аннотация:
It is proved that if $\pi$-Hall subgroup is a supersolvable group then the derived $\pi$-length of a $\pi$-solvable group $G$ is at most $1+ \max_{r\in \pi}l_r^a(G),$ where $l_r^a(G)$ is the derived $r$-length of a $\pi$-solvable group $G.$
Ключевые слова:
finite group, $\pi$-soluble group, supersolvable group, $\pi$-Hall subgroup, derived $\pi$-length.
Поступила в редакцию: 18.05.2013 Исправленный вариант: 18.05.2013
Образец цитирования:
V. S. Monakhov, D. V. Gritsuk, “On derived $\pi$-length of a finite $\pi$-solvable group with supersolvable $\pi$-Hall subgroup”, Algebra Discrete Math., 16:2 (2013), 233–241
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm450 https://www.mathnet.ru/rus/adm/v16/i2/p233
|
Статистика просмотров: |
Страница аннотации: | 428 | PDF полного текста: | 113 | Список литературы: | 76 |
|