|
Algebra and Discrete Mathematics, 2010, том 10, выпуск 2, страницы 1–9
(Mi adm44)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
RESEARCH ARTICLE
Modules whose maximal submodules have $\tau$-supplements
E. Büyükaşik Izmir Institute of Technology, Department of Mathematics, 35430, Urla, Izmir, Turkey
Аннотация:
Let $R$ be a ring and $\tau$ be a preradical for the category of left $R$-modules. In this paper, we study on modules whose maximal submodules have $\tau$-supplements. We give some characterizations of these modules in terms their certain submodules, so called $\tau$-local submodules. For some certain preradicals $\tau$, i.e. $\tau=\delta$ and idempotent $\tau$, we prove that every maximal submodule of $M$ has a $\tau$-supplement if and only if every cofinite submodule of $M$ has a $\tau$-supplement. For a radical $\tau$ on R-Mod, we prove that, for every $R$-module every submodule is a $\tau$-supplement if and only if $R/\tau(R)$ is semisimple and $\tau$ is hereditary.
Ключевые слова:
preradical, $\tau$-supplement, $\tau$-local.
Поступила в редакцию: 24.04.2010 Исправленный вариант: 01.03.2011
Образец цитирования:
E. Büyükaşik, “Modules whose maximal submodules have $\tau$-supplements”, Algebra Discrete Math., 10:2 (2010), 1–9
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm44 https://www.mathnet.ru/rus/adm/v10/i2/p1
|
Статистика просмотров: |
Страница аннотации: | 194 | PDF полного текста: | 102 | Первая страница: | 1 |
|