|
Algebra and Discrete Mathematics, 2013, том 16, выпуск 1, страницы 103–106
(Mi adm438)
|
|
|
|
RESEARCH ARTICLE
On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field
V. Nesteruk Algebra and Logic Department, Mechanics and Mathematics Faculty, Ivan Franko National University of L’viv, 1, Universytetska str., Lviv, 79000, Ukraine
Аннотация:
In this note, we consider the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field. P. Bruin [1] defined this pairing over finite field $k$: $\mathrm{ker}\,\hat{\phi}(k) \; \times \; \mathrm{coker}\,(\phi(k)) \longrightarrow k^*$, and proved its perfectness over finite field. We prove perfectness of the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field, with help of the method, used by P. Bruin in the case of finite ground field [1].
Ключевые слова:
pseudofinite field, isogeny, Tate pairing associated to an isogeny.
Поступила в редакцию: 13.02.2012 Исправленный вариант: 30.03.2013
Образец цитирования:
V. Nesteruk, “On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field”, Algebra Discrete Math., 16:1 (2013), 103–106
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm438 https://www.mathnet.ru/rus/adm/v16/i1/p103
|
Статистика просмотров: |
Страница аннотации: | 173 | PDF полного текста: | 129 | Список литературы: | 35 |
|