|
Algebra and Discrete Mathematics, 2003, выпуск 2, страницы 1–13
(Mi adm375)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
RESEARCH ARTICLE
On check character systems over quasigroups and loops
G. B. Belyavskaya Institute of Mathematics and Computer, Science, Academy of Sciences of Moldova, str. Academiei, 5, MD–2028, Chishinau, Moldova
Аннотация:
In this article we study check character systems that is error detecting codes, which arise by appending a check digit $a_n$ to every word $a_1a_2\dots a_{n-1}: a_1a_2\dots a_{n-1}\rightarrow a_1a_2\dots a_{n-1}a_n$ with the check formula $ (\dots((a_1\cdot\delta a_2)\cdot \delta^2a_3)\dots)\cdot \delta^{n-2}a_{n-1})\cdot\delta^{n-1}a_n=c$, where $Q(\cdot)$ is a quasigroup or a loop, $\delta$ is a permutation of $Q$, $c\in Q$. We consider detection sets for such errors as transpositions $(ab\rightarrow ba)$, jump transpositions $(acb\rightarrow bca)$, twin errors $(aa\rightarrow bb)$ and jump twin errors $(aca\rightarrow bcb)$ and an automorphism equivalence (a weak equivalence) for a check character systems over the same quasigroup (over the same loop). Such equivalent systems detect the same percentage (rate) of the considered error types.
Ключевые слова:
quasigroup, loop, group, automorphism, check character system, code.
Поступила в редакцию: 23.04.2003 Исправленный вариант: 11.07.2003
Образец цитирования:
G. B. Belyavskaya, “On check character systems over quasigroups and loops”, Algebra Discrete Math., 2003, no. 2, 1–13
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm375 https://www.mathnet.ru/rus/adm/y2003/i2/p1
|
Статистика просмотров: |
Страница аннотации: | 126 | PDF полного текста: | 70 | Первая страница: | 1 |
|