|
Algebra and Discrete Mathematics, 2003, выпуск 1, страницы 32–35
(Mi adm367)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
RESEARCH ARTICLE
A note on maximal ideals in ordered semigroups
N. Kehayopulua, J. Ponizovskiib, M. Tsingelisa a University of Athens, Department of Mathematics
Section of algebra and geometry, Panepistemiopolis, Athens 157 84, Greece
b Russian State Hydrometeorological University Department of Mathematics Malookhtinsky pr. 98 195196, Saint-Petersburg, Russia
Аннотация:
In commutative rings having an identity element, every maximal ideal is a prime ideal, but the converse statement does not hold, in general. According to the present note, similar results for ordered semigroups and semigroups-without order-also hold. In fact, we prove that in commutative ordered semigroups with identity each maximal ideal is a prime ideal, the converse statement does not hold, in general.
Ключевые слова:
maximal ideal, prime ideal in ordered semigroups.
Поступила в редакцию: 06.12.2002
Образец цитирования:
N. Kehayopulu, J. Ponizovskii, M. Tsingelis, “A note on maximal ideals in ordered semigroups”, Algebra Discrete Math., 2003, no. 1, 32–35
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm367 https://www.mathnet.ru/rus/adm/y2003/i1/p32
|
Статистика просмотров: |
Страница аннотации: | 139 | PDF полного текста: | 77 | Первая страница: | 1 |
|