|
Algebra and Discrete Mathematics, 2004, выпуск 1, страницы 112–120
(Mi adm331)
|
|
|
|
Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)
RESEARCH ARTICLE
On associative algebras satisfying the identity $x^5=0$
Ivan P. Shestakova, Natalia Zhukavetsb a Instituto de Matemática e Estatíэstica,
Universidade de São Paulo, Brasil
and Sobolev Institute of Mathematics,
Novosibirsk, Russia
b Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
Аннотация:
We study Kuzmin's conjecture on the index of nilpotency for the variety ${\mathcal {N}il}_5$ of associative nil-algebras of degree 5. Due to Vaughan–Lee [11] the problem is reduced to that for $k$-generator ${\mathcal {N}il}_5$-superalgebras, where $k\leq 5$. We confirm Kuzmin's conjecture for 2-generator superalgebras proving that they are nilpotent of degree 15.
Ключевые слова:
Nil-algebra, nilpotency degree, superalgebra.
Поступила в редакцию: 22.10.2003 Исправленный вариант: 27.01.2004
Образец цитирования:
Ivan P. Shestakov, Natalia Zhukavets, “On associative algebras satisfying the identity $x^5=0$”, Algebra Discrete Math., 2004, no. 1, 112–120
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm331 https://www.mathnet.ru/rus/adm/y2004/i1/p112
|
|