|
Algebra and Discrete Mathematics, 2004, выпуск 1, страницы 37–56
(Mi adm327)
|
|
|
|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
RESEARCH ARTICLE
Root vectors of the composition algebra of the Kronecker algebra
Xueqing Chen Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Ave, Ottawa, ON. K1N 6N5,
Canada
Аннотация:
According to the canonical isomorphism between the positive part $U^+_q(g)$ of the Drinfeld–Jimbo quantum group $U_q (g)$ and the generic composition algebra ${\mathcal C} (\Delta)$ of $\Lambda$, where the Kac–Moody Lie algebra $g$ and the finite dimensional hereditary algebra $\Lambda$ have the same diagram, in specially, we get a realization of quantum root vectors of the generic composition algebra of the Kronecker algebra by using the Ringel–Hall approach. The commutation relations among all root vectors are given and an integral PBW–basis of this algebra is also obtained.
Ключевые слова:
Quantum group, root vector, Hall algebra, AR-quiver.
Поступила в редакцию: 16.10.2003 Исправленный вариант: 27.01.2004
Образец цитирования:
Xueqing Chen, “Root vectors of the composition algebra of the Kronecker algebra”, Algebra Discrete Math., 2004, no. 1, 37–56
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm327 https://www.mathnet.ru/rus/adm/y2004/i1/p37
|
|