|
Algebra and Discrete Mathematics, 2005, выпуск 3, страницы 18–29
(Mi adm309)
|
|
|
|
RESEARCH ARTICLE
On mappings of terms determined by hypersubstitutions
Jörg Koppitza, Slavcho Shtrakovb a University of Potsdam Institute of Mathematics
Postfach 601553 14415 Potsdam, Germany
b South-West-University Blagoevgrad Faculty of Mathematics and Natural Sciences 2700 Blagoevgrad, Bulgaria
Аннотация:
The extensions of hypersubstitutions are mappings on the set of all terms. In the present paper we characterize all hypersubstitutions which provide bijections on the set of all terms. The set of all such hypersubstitutions forms a monoid.
On the other hand, one can modify each hypersubstitution to any mapping on the set of terms. For this we can consider mappings $\rho$ from the set of all hypersubstitutions into the set of all mappings on the set of all terms. If for each hypersubstitution $\sigma$ the application of $\rho(\sigma )$ to any identity in a given variety $V$ is again an identity in $V$, so that variety is called $\rho$-solid. The concept of a $\rho$-solid variety generalizes the concept of a solid variety. In the present paper, we determine all $\rho$-solid varieties of semigroups for particular mappings $\rho$.
Ключевые слова:
$\rho$-solid, hypersubstitution, bijectio.
Поступила в редакцию: 26.05.2005 Исправленный вариант: 22.07.2005
Образец цитирования:
Jörg Koppitz, Slavcho Shtrakov, “On mappings of terms determined by hypersubstitutions”, Algebra Discrete Math., 2005, no. 3, 18–29
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm309 https://www.mathnet.ru/rus/adm/y2005/i3/p18
|
Статистика просмотров: |
Страница аннотации: | 307 | PDF полного текста: | 67 | Первая страница: | 1 |
|