|
Algebra and Discrete Mathematics, 2006, выпуск 3, страницы 71–91
(Mi adm272)
|
|
|
|
RESEARCH ARTICLE
On fully wild categories of representations of posets
Stanisław Kasjan Faculty of Mathematics and Computer
Science, Nicolaus Copernicus University,
Chopina 12/18, 87–100 Toruń, Poland
Аннотация:
Assume that $I$ is a finite partially ordered set and $k$ is a field. We prove that if the category prin$(kI)$ of prinjective modules over the incidence $k$-algebra $kI$ of $I$ is fully $k$-wild then the category $fpr(I,k)$ of finite dimensional $k$-representations of $I$ is also fully $k$-wild. A key argument is a construction of fully faithful exact endofunctors of the category of finite dimensional $k\langle x,y\rangle$-modules, with the image contained in certain subcategories.
Ключевые слова:
representations of posets, wild, fully wild representation type, endofunctors of wild module category.
Поступила в редакцию: 01.06.2005 Исправленный вариант: 22.11.2006
Образец цитирования:
Stanisław Kasjan, “On fully wild categories of representations of posets”, Algebra Discrete Math., 2006, no. 3, 71–91
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm272 https://www.mathnet.ru/rus/adm/y2006/i3/p71
|
Статистика просмотров: |
Страница аннотации: | 220 | PDF полного текста: | 86 | Первая страница: | 1 |
|