|
Algebra and Discrete Mathematics, 2006, выпуск 3, страницы 49–54
(Mi adm270)
|
|
|
|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
RESEARCH ARTICLE
On $\mathfrak{F}$-radicals of finite $\pi$-soluble groups
Wenbin Guo, Xi Liu, Baojun Li Department of Mathematics, Xuzhou
Normal University, Xuzhou, 221116, P. R. China; and Department of Mathematics,
University of Science and Technology of
China Hefei 230026, P. R. China
Аннотация:
In this paper, we prove that for every local $\pi$-saturated Fitting class $\mathcal{F}$ with $char(\mathcal{F})=\mathbb{P}$, the $\mathcal{F}$-radical of every finite $\pi$-soluble groups $G$ has the property: $C_G(G_\mathcal{F})\subseteq G_\mathcal{F}$. From this, some well known results are followed and some new results are obtained.
Ключевые слова:
Finite group; $\pi$-soluble group; $\mathcal{F}$-radical, Fitting class.
Поступила в редакцию: 22.10.2005 Исправленный вариант: 21.11.2006
Образец цитирования:
Wenbin Guo, Xi Liu, Baojun Li, “On $\mathfrak{F}$-radicals of finite $\pi$-soluble groups”, Algebra Discrete Math., 2006, no. 3, 49–54
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm270 https://www.mathnet.ru/rus/adm/y2006/i3/p49
|
Статистика просмотров: |
Страница аннотации: | 249 | PDF полного текста: | 61 | Первая страница: | 1 |
|