|
Algebra and Discrete Mathematics, 2006, выпуск 3, страницы 36–48
(Mi adm269)
|
|
|
|
Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)
RESEARCH ARTICLE
Twisted conjugacy classes of Automorphisms of Baumslag–Solitar groups
Alexander Fel'shtyna, Daciberg L. Gonçalvesb a Instytut Matematyki, Uniwersytet Szczecinski, ul. Wielkopolska 15, 70–451 Szczecin,
Poland and Boise State University, 1910
University Drive, Boise, Idaho, 83725–155, USA
b Dept. de Matemática – IME – USP, Caixa
Postal 66.281 –CEP 05311–970, São Paulo –SP, Brasil
Аннотация:
Let $\phi:G\to G$ be a group endomorphism where $G$ is a finitely generated group of exponential growth, and denote by $R(\phi)$ the number of twisted $\phi$-conjugacy classes. Fel'shtyn and Hill [7] conjectured that if $\phi$ is injective, then $R(\phi)$ is infinite. This conjecture is true for automorphisms of non-elementary Gromov hyperbolic groups, see [17] and [6]. It was showed in [12] that the conjecture does not hold in general. Nevertheless in this paper, we show that the conjecture holds for injective homomorphisms for the family of the Baumslag–Solitar groups $B(m,n)$ where $m\ne n$ and either $m$ or $n$ is greater than 1, and for automorphisms for the case $m=n>1$. family of the Baumslag–Solitar groups $B(m,n)$ where $m\ne n$.
Ключевые слова:
Reidemeister number, twisted conjugacy classes, Baumslag–Solitar groups.
Поступила в редакцию: 30.01.2006 Исправленный вариант: 24.11.2006
Образец цитирования:
Alexander Fel'shtyn, Daciberg L. Gonçalves, “Twisted conjugacy classes of Automorphisms of Baumslag–Solitar groups”, Algebra Discrete Math., 2006, no. 3, 36–48
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm269 https://www.mathnet.ru/rus/adm/y2006/i3/p36
|
Статистика просмотров: |
Страница аннотации: | 191 | PDF полного текста: | 94 | Первая страница: | 1 |
|