|
Algebra and Discrete Mathematics, 2007, выпуск 4, страницы 45–58
(Mi adm233)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
RESEARCH ARTICLE
Exponent matrices and topological equivalence of maps
Volodymyr Fedorenkoa, Volodymyr Kirichenkob, Makar Plakhotnykb a Department of dynamical systems of the
Mathematical institute NASU Tereshchenkivska str., 3, Kyiv, Ukraine
b Department of Mechanics and Mathematics, Kyiv National Taras Shevchenko Univ., Volodymyrska str., 64, 01033 Kyiv, Ukraine
Аннотация:
Conjugate classes of continuous maps of the interval $[0,\,1]$ into itself, whose iterations form a finite group are described. For each of possible groups of iterations one to one correspondence between conjugate classes of maps and equivalent classes of $(0,\,1)$-exponent matrices of special form is constructed. Easy way of finding the quiver of the map in terms of the set of its extrema is found.
Ключевые слова:
exponent matrix, finite orbits, topological equivalence.
Образец цитирования:
Volodymyr Fedorenko, Volodymyr Kirichenko, Makar Plakhotnyk, “Exponent matrices and topological equivalence of maps”, Algebra Discrete Math., 2007, no. 4, 45–58
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm233 https://www.mathnet.ru/rus/adm/y2007/i4/p45
|
Статистика просмотров: |
Страница аннотации: | 148 | PDF полного текста: | 66 | Первая страница: | 1 |
|