|
Algebra and Discrete Mathematics, 2007, выпуск 2, страницы 125–129
(Mi adm212)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
RESEARCH ARTICLE
Automorphisms of kaleidoscopical graphs
I. V. Protasov, K. D. Protasova Department of Cybernetics,Kyiv National University, Volodimirska 64, Kyiv 01033,
UKRAINE
Аннотация:
A regular connected graph $\Gamma$ of degree $s$ is called kaleidoscopical if there is a $(s+1)$-coloring of the set of its vertices such that every unit ball in $\Gamma$ has no distinct monochrome points. The kaleidoscopical graphs can be considered as a graph counterpart of the Hamming codes. We describe the groups of automorphisms of kaleidoscopical trees and Hamming graphs. We show also that every finitely generated group can be realized as the group of automorphisms of some kaleidoscopical graphs.
Ключевые слова:
kaleidoscopical graph, Hamming pair, kaleidoscopical tree.
Образец цитирования:
I. V. Protasov, K. D. Protasova, “Automorphisms of kaleidoscopical graphs”, Algebra Discrete Math., 2007, no. 2, 125–129
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm212 https://www.mathnet.ru/rus/adm/y2007/i2/p125
|
Статистика просмотров: |
Страница аннотации: | 141 | PDF полного текста: | 59 | Первая страница: | 1 |
|