|
Algebra and Discrete Mathematics, 2011, том 12, выпуск 2, страницы 85–93
(Mi adm132)
|
|
|
|
RESEARCH ARTICLE
Fully invariant subgroups of an infinitely iterated wreath product
Yuriy Yu. Leshchenko Department of Algebra and Mathematical Analysis, Bogdan Khmelnitsky National University, 81, Shevchenko blvd., Cherkasy, 18031, Ukraine
Аннотация:
The article deals with the infinitely iterated wreath product of cyclic groups $C_p$ of prime order $p$. We consider a generalized infinite wreath product as a direct limit of a sequence of finite $n$th wreath powers of $C_p$ with certain embeddings and use its tableau representation. The main result are the statements that this group doesn't contain a nontrivial proper fully invariant subgroups and doesn't satisfy the normalizer condition.
Ключевые слова:
wreath product, fully invariant subgroups.
Поступила в редакцию: 15.04.2011 Исправленный вариант: 19.12.2011
Образец цитирования:
Yuriy Yu. Leshchenko, “Fully invariant subgroups of an infinitely iterated wreath product”, Algebra Discrete Math., 12:2 (2011), 85–93
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm132 https://www.mathnet.ru/rus/adm/v12/i2/p85
|
Статистика просмотров: |
Страница аннотации: | 208 | PDF полного текста: | 104 | Список литературы: | 43 | Первая страница: | 1 |
|