|
Algebra and Discrete Mathematics, 2009, выпуск 3, страницы 20–27
(Mi adm126)
|
|
|
|
RESEARCH ARTICLE
A variant of the primitive element theorem for separable extensions of a commutative ring
Dirceu Bagioa, Antonio Paquesb a Departamento de Matemática, Universidade Federal de Santa Maria, 97105–900, Santa Maria, RS, Brazil
b Instituto de Matemática, Universidade Federal do Rio Grande do Sul 91509–900, Porto Alegre, RS, Brazil
Аннотация:
In this article we show that any strongly separable extension of a commutative ring $R$ can be embedded into another one having primitive element whenever every boolean localization of $R$ modulo its Jacobson radical is von Neumann regular and locally uniform.
Ключевые слова:
primitive element, separable extension, boolean localization.
Поступила в редакцию: 12.08.2009 Исправленный вариант: 25.09.2009
Образец цитирования:
Dirceu Bagio, Antonio Paques, “A variant of the primitive element theorem for separable extensions of a commutative ring”, Algebra Discrete Math., 2009, no. 3, 20–27
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm126 https://www.mathnet.ru/rus/adm/y2009/i3/p20
|
|