|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
Статьи
On a generalization of the Bernstein–Markov inequality
T. Erdélyia, J. Szabadosb a Texas A&M University
b Alfréd Rényi Institute of Mathematics, Hungary Academy of Sciences
Аннотация:
It is shown that
$$
\|P'Q\|_{L_p(I)}\leq c^{1+1/p}(N+M)\log(\min(N,M+1)+1)\|PQ\|_{L_p(I)}
$$
for all real trigonometric polynomials $P$ and $Q$ of degree $N$ and $M$, respectively, where $0<p\leq\infty$, $I:=(-\pi,\pi]$, and $c>0$ is a suitable absolute constant. Also, it is shown that
$$
\|f'g\|_{L_p(J)}\leq c^{1+1/p}(N+M)^2\|fg\|_{L_p(J)}
$$
for all algebraic polynomials $f$ and $g$ of degree $N$ and $M$, respectively, where $0<p\leq\infty$, $J:=[-1,1]$, and $c>0$ is a suitable absolute constant. Both of the above trigonometric and algebraic results are sharp up to the factor $c^{1+1/p}$. In fact, the results are proved for the much wider classes of generalized trigonometric and algebraic polynomials.
Поступила в редакцию: 05.11.2001
Образец цитирования:
T. Erdélyi, J. Szabados, “On a generalization of the Bernstein–Markov inequality”, Алгебра и анализ, 14:4 (2002), 36–53
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa868 https://www.mathnet.ru/rus/aa/v14/i4/p36
|
|