|
Эта публикация цитируется в 9 научных статьях (всего в 9 статьях)
Статьи
Relaxation of convex variational problems with linear growth defined on classes of vector-valued functions
M. Bildhauer, M. Fuchs Universität des Saarlandes, Saarbrücken, Germany
Аннотация:
For a bounded Lipschitz domain $\Omega\subset\mathbb R^n$ and a function
$u_0\in W{}_1^1(\Omega;\mathbb R^N)$, the following minimization problem is considered:
$$
(\mathcal P)\colon\int_\Omega f(\nabla u)\,dx\to\min\quad\text{in}\quad u_0+\overset\circ W{}_1^1(\Omega;\mathbb R^N),
$$
where $f\colon\mathbb R^{nN}\to[0,\infty)$ is a strictly convex integrand. Let $\mathcal M$ denote the set of all $L^1$-cluster points of minimizing sequences of problem $(\mathcal P)$. It is shown that the geometric relaxation of problem $(\mathcal P)$ coincides with the relaxation based on the notion of the extended Lagrangian; moreover, it is proved that the elements $u$ of $\mathcal M$ are in one-to-one correspondence with the solutions of the relaxed problems.
Ключевые слова:
variational problems, linear growth, generalized minimizers, relaxation, functions of bounded variation.
Поступила в редакцию: 27.08.2001
Образец цитирования:
M. Bildhauer, M. Fuchs, “Relaxation of convex variational problems with linear growth defined on classes of vector-valued functions”, Алгебра и анализ, 14:1 (2002), 26–45; St. Petersburg Math. J., 14:1 (2003), 19–33
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa832 https://www.mathnet.ru/rus/aa/v14/i1/p26
|
Статистика просмотров: |
Страница аннотации: | 741 | PDF полного текста: | 127 | Список литературы: | 1 | Первая страница: | 1 |
|