|
Эта публикация цитируется в 57 научных статьях (всего в 57 статьях)
Статьи
A tropical approach to enumerative geometry
E. Shustin Tel Aviv University, School of Mathematical Sciences, Aviv, Tel Aviv, Israel
Аннотация:
A detailed algebraic-geometric background is presented for the tropical approach to enumeration of singular curves on toric surfaces, which consists of reducing the enumeration of algebraic curves to that of non-Archimedean amoebas, the images of algebraic curves by a real-valued non-Archimedean valuation. This idea was proposed by Kontsevich and recently realized by Mikhalkin, who enumerated the nodal curves on toric surfaces [18]. The main technical tools are a refined tropicalization of one-parametric equisingular families of curves and the patchworking construction of singular algebraic curves. The case of curves with a cusp and the case of real nodal curves are also treated.
Поступила в редакцию: 20.06.2003
Образец цитирования:
E. Shustin, “A tropical approach to enumerative geometry”, Алгебра и анализ, 17:2 (2005), 170–214; St. Petersburg Math. J., 17:2 (2006), 343–375
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa665 https://www.mathnet.ru/rus/aa/v17/i2/p170
|
Статистика просмотров: |
Страница аннотации: | 778 | PDF полного текста: | 428 | Список литературы: | 84 | Первая страница: | 1 |
|