|
Алгебра и анализ, 1995, том 7, выпуск 6, страницы 205–226
(Mi aa584)
|
|
|
|
Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)
Статьи
Weighted embeddings and weighted norm inequalities for the Hilbert transform and the maximal operator
S. R. Treilab, A. L. Volbergcdb a St. Petersburg State Univ., Dept. of Math., Staryi Petergof
b Department of Mathematics, Michigan State University
c St. Petersburg branch of V. A. Steklov Math. Inst.
d UFR de Math., Univ. Paul Sabatier, Toulouse
Аннотация:
In this paper we consider a new approach to weighted norm inequalities. This approach is based on weighted embedding theorems of Carleson type. When $p=2$ the boundedness of an embedding operator follows from a technical trick (the Vinogradov–Senichkin test) which amounts to “doubling” the kernel of this operator. We show how this approach enables us to prove the Hunt–Muckenhoupt–Wheeden and Sawyer theorems. We also formulate a necessary and sufficient condition for vector weighted boundedness of the Hubert transform (the matrix $A_2$-condition), which we have obtained using this approach.
Поступила в редакцию: 15.05.1995
Образец цитирования:
S. R. Treil, A. L. Volberg, “Weighted embeddings and weighted norm inequalities for the Hilbert transform and the maximal operator”, Алгебра и анализ, 7:6 (1995), 205–226; St. Petersburg Math. J., 7:6 (1996), 1017–1032
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa584 https://www.mathnet.ru/rus/aa/v7/i6/p205
|
Статистика просмотров: |
Страница аннотации: | 382 | PDF полного текста: | 217 | Первая страница: | 1 |
|