|
Алгебра и анализ, 1995, том 7, выпуск 1, страницы 92–152
(Mi aa491)
|
|
|
|
Эта публикация цитируется в 30 научных статьях (всего в 30 статьях)
Статьи
Groups generated by involutions, Gelfand–Tsetlin patterns, and combinatorics of Young tableaux
A. N. Kirillova, A. D. Berenstein a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Аннотация:
We construct ceratin families of piecewise linear representations ($spl$ representations)
of the symmetric group $S_n$ and of the affme Weyl group $\widetilde S_n$ of type
$A_{n-1}^{(1)}$ acting on the space of triangles $X_n$. We find a nontrivial family of local $spl$-invariants
for the action of the symmetric group $S_n$ on the space $X_n$ and construct a global invariant
with respect to the action of the affine Weyl group $\widetilde S_n$ (the so-called cocharge). We find
continuous analogs for the Kostka–Foulkes polynomials and for the crystal graph. We give
an algebraic version of some combinatorial transformations on the set of standard Young
tableaux.
Ключевые слова:
phrases, representation, young tableau, Gelfand–Tsetlin pattern.
Поступила в редакцию: 25.05.1993
Образец цитирования:
A. N. Kirillov, A. D. Berenstein, “Groups generated by involutions, Gelfand–Tsetlin patterns, and combinatorics of Young tableaux”, Алгебра и анализ, 7:1 (1995), 92–152; St. Petersburg Math. J., 7:1 (1996), 77–127
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa491 https://www.mathnet.ru/rus/aa/v7/i1/p92
|
|