|
Алгебра и анализ, 1993, том 5, выпуск 2, страницы 211–217
(Mi aa385)
|
|
|
|
Статьи
A canonical anti-isomorphism of matrix Hecke rings
S. Raghavan Tata Institute of Fundamental Research
Аннотация:
In the case of abstract Hecke rings $D(\Gamma,\mathbf S)$ associated with a Hecke pair $(\Gamma,\mathbf S)$ for a multiplicative group ([2], § 3.1), there exists a canonical anti-isomorphism taking a double coset $\Gamma g\Gamma$ for $g$ in $\mathbf S$ to the double coset $\Gamma g^{-1}\Gamma$. Anti-automorphisms in Hecke rings are of interest, since, under suitable conditions, they imply the commutativity of these rings. In a recent paper [1] on the multiplicative properties of integral representations of quadratic
forms by quadratic forms, Andrianov has defined an abstract matrix Hecke ring, motivated
by his concept of the ring of classes of automorphs of a given system of quadratic forms.
The object of this note is to seek an answer to a natural question raised by him on the
existence of a canonical anti-isomorphism in the case of these abstract matrix Hecke rings.
Ключевые слова:
Hecke pair, Hecke ring, matrix Hecke ring, canonical anti-isomorphism.
Поступила в редакцию: 24.04.1992
Образец цитирования:
S. Raghavan, “A canonical anti-isomorphism of matrix Hecke rings”, Алгебра и анализ, 5:2 (1993), 211–217; St. Petersburg Math. J., 5:2 (1994), 407–413
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa385 https://www.mathnet.ru/rus/aa/v5/i2/p211
|
Статистика просмотров: |
Страница аннотации: | 286 | PDF полного текста: | 90 | Список литературы: | 1 | Первая страница: | 1 |
|