|
Алгебра и анализ, 1991, том 3, выпуск 3, страницы 110–126
(Mi aa257)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Статьи
Isometric and contractive operators in Kreǐn spaces
Manfred Möller University of the Witwatersrand, Department of Mathematics
Аннотация:
Let $T$ be a continuous isometric linear operator on a Krein space $\mathcal K$. In general, $T$ is not isometric with respect to a norm on $\mathcal K$ whose metric topology is the Mackey topology on $\mathcal K$. In this note we give a sufficient condition that a norm exists which preserves an isomerty or contraction. We apply this result to prove that, under a certain assumption, the main transformation of a linear system is similar to a Hilbert space contraction. A slight modification of this result is used to give a new proof of a theorem of Davis and Foias. It says that an operator in a Hilbert space is similar to a contraction if a corresponding transfer function is bounded on the open unit disk. As another application it is used to generalize the Beurling-Lax theorem to Krein spaces which are contained continuously and contractively in a space of square summable power series with coefficients in a Krein space.
Поступила в редакцию: 25.06.1990
Образец цитирования:
Manfred Möller, “Isometric and contractive operators in Kreǐn spaces”, Алгебра и анализ, 3:3 (1991), 110–126; St. Petersburg Math. J., 3:3 (1992), 595–611
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa257 https://www.mathnet.ru/rus/aa/v3/i3/p110
|
Статистика просмотров: |
Страница аннотации: | 371 | PDF полного текста: | 146 | Список литературы: | 1 | Первая страница: | 1 |
|