|
Статьи
Remark on the ill-posedness of the hyperbolic Prandtl system
Zhonger Wua, Ping Zhangbca a Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
b Hua Loo-Keng Key Laboratory of Mathematics, the Chinese Academy of Sciences, Beijing 100190, China
c School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Аннотация:
The paper is devoted to the ill-posedness of the linearized hyperbolic Prandtl system around a shear flow. As in [7] for the classical Prandtl system, the hyperbolic Prandtl system with initial data that does not satisfy monotonicity condition is ill posed at least in a Sobolev space. As a byproduct, we deduce that the optimal Gevrey index for the well-poseness of the hyperbolic Prandtl system is 2.
Ключевые слова:
Hyperbolic Prandtl system, shear flow, ill-posedness, Sobolev spaces, optimal Gevrey index.
Поступила в редакцию: 29.01.2024
Образец цитирования:
Zhonger Wu, Ping Zhang, “Remark on the ill-posedness of the hyperbolic Prandtl system”, Алгебра и анализ, 36:3 (2024), 22–44
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1916 https://www.mathnet.ru/rus/aa/v36/i3/p22
|
Статистика просмотров: |
Страница аннотации: | 75 | PDF полного текста: | 2 | Список литературы: | 30 | Первая страница: | 13 |
|