|
Алгебра и анализ, 2023, том 35, выпуск 5, страницы 183–208
(Mi aa1888)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Статьи
Суммы Валле Пуссена рациональных интегральных операторов Фурье–Чебышева и аппроксимации функции Маркова
П. Г. Поцейко, Е. А. Ровба Гродненский государственный университет имени Янки Купалы, ул. Ожешко 22, 230023 г. Гродно, Республика Беларусь
Аннотация:
Изучаются рациональные аппроксимации на отрезке $[-1,~1]$ функции Маркова. В качестве аппарата приближений выбираются суммы Валле Пуссена рациональных интегральных операторов Фурье–Чебышева с фиксированным количеством геометрически различных полюсов. Для построенного метода рациональной аппроксимации устанавливаются интегральные представления приближений и оценки сверху равномерных приближений.
Для функции Маркова с мерой, производная которой есть функция, имеющая на отрезке $[-1,~1]$ степенную особенность, найдены оценки сверху поточечных и равномерных приближений и асимптотическое выражение мажоранты равномерных приближений. Установлены значения параметров аппроксимирующей функции, при которых обеспечиваются наилучшие равномерные рациональные приближения этим методом. Показано, что в этом случае они имеют более высокую скорость убывания в сравнении с соответствующими полиномиальными аналогами. В качестве следствия рассмотрены рациональные аппроксимации на отрезке суммами Валле Пуссена некоторых элементарных функций, представимых функцией Маркова.
Ключевые слова:
функция Маркова, рациональные интегральные операторы, суммы Валле Пуссена, равномерные рациональные аппроксимации, асимптотические оценки, метод Лапласа.
Поступила в редакцию: 08.12.2022
Образец цитирования:
П. Г. Поцейко, Е. А. Ровба, “Суммы Валле Пуссена рациональных интегральных операторов Фурье–Чебышева и аппроксимации функции Маркова”, Алгебра и анализ, 35:5 (2023), 183–208
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1888 https://www.mathnet.ru/rus/aa/v35/i5/p183
|
Статистика просмотров: |
Страница аннотации: | 78 | PDF полного текста: | 8 | Список литературы: | 16 | Первая страница: | 5 |
|