|
Алгебра и анализ, 2023, том 35, выпуск 2, страницы 174–225
(Mi aa1862)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Статьи
Local invariants of noncommutative tori
F. Sukochev, D. Zanin University of New South Wales, Kensington, NSW, 2052, Australia
Аннотация:
The notion of a generic curved noncommutative torus is considered, which extends the notion of conformally deformed noncommutative torus introduced by Connes and Tretkoff. For this manifold, an asymptotic expansion is established for the heat semigroup generated by Laplace–Beltrami operator (in fact, for an arbitrary selfadjoint positive elliptic differential operator of order $2$) and an algorithm is provided to compute the local invariants that arize as coefficients in the expansion. This allows one to extend a series of previous results by several authors beyond the conformal case and/or for multidimensional tori.
Ключевые слова:
heat semigroup, Hodge–de Rham operator, noncommutative geometry.
Поступила в редакцию: 04.06.2021
Образец цитирования:
F. Sukochev, D. Zanin, “Local invariants of noncommutative tori”, Алгебра и анализ, 35:2 (2023), 174–225; St. Petersburg Math. J., 35:2 (2024), 377–415
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1862 https://www.mathnet.ru/rus/aa/v35/i2/p174
|
Статистика просмотров: |
Страница аннотации: | 129 | PDF полного текста: | 2 | Список литературы: | 30 | Первая страница: | 12 |
|