|
Алгебра и анализ, 2023, том 35, выпуск 1, страницы 283–303
(Mi aa1855)
|
|
|
|
Статьи
Complete nonselfadjointness for Schrödinger operators on the semi-axis
C. Fischbachera, S. N. Nabokob, I. Woodc a Department of Mathematics,
Baylor University,
Sid Richhardson Bldg., 1410 S.,
4th Street, Waco, TX 76706, USA
b Department of Math. Physics,
Institute of Physics,
St. Petersburg State University,
1 Ulianovskaia, St. Petergoff,
St. Petersburg, 198504, Russia
c School of Mathematics,
Statistics and Actuarial Sciences,
University of Kent, Canterbury, CT2 7FS, UK
Аннотация:
This note is devoted to the study of complete nonselfadjointness for all maximally dissipative extensions of a Schrödinger operator on a half-line with dissipative bounded potential and dissipative boundary condition. It is shown that all maximally dissipative extensions that preserve the differential expression are completely nonselfadjoint. However, it is possible for maximally dissipative extensions to have a one-dimensional reducing subspace on which the operator is selfadjoint. A characterisation of these extensions and the corresponding subspaces is given, accompanied by a specific example.
Ключевые слова:
maximally dissipative extension, limit-point Schrödinger operator, selfadjoint dilation, dissipative potential.
Поступила в редакцию: 22.08.2021
Образец цитирования:
C. Fischbacher, S. N. Naboko, I. Wood, “Complete nonselfadjointness for Schrödinger operators on the semi-axis”, Алгебра и анализ, 35:1 (2023), 283–303; St. Petersburg Math. J., 35:1 (2024), 217–232
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1855 https://www.mathnet.ru/rus/aa/v35/i1/p283
|
Статистика просмотров: |
Страница аннотации: | 96 | PDF полного текста: | 1 | Список литературы: | 28 | Первая страница: | 12 |
|