|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Статьи
Функции от возмущëнных некоммутирующих неограниченных самосопряжëнных операторов
А. Б. Александровa, В. В. Пеллерba a С.-Петербургское отделение Математического института им. В. А. Стеклова РАН, наб. р. Фонтанки, 27, 191023, Санкт-Петербург, Россия
b С.-Петербургский Государственный Университет, Университетская наб., 7/9, Санкт-Петербург, Россия
Аннотация:
Пусть $f$ — функция на $\mathbb{R}^2$ из неоднородного пространства Бесова $\text{Б}_{\infty,1}^1(\mathbb{R}^2)$. Для пары $(A,B)$ неограниченных не обязательно коммутирующих самосопряжённых операторов мы определяем функцию $f(A,B)$ от $A$ и $B$ как плотно определённый линейный оператор. Показывается, что если $1\le p\le2$, $(A_1,B_1)$ и $(A_2,B_2)$ — пары не обязательно ограниченных и не обязательно коммутирующих самосопряжённых операторов, таких, что операторы $A_1-A_2$ и $B_1-B_2$ входят в класс Шаттена–фон Неймана $\mathbf{S}_p$, и $f\in\text{Б}_{\infty,1}^1(\mathbb{R}^2)$, то имеет место следующая оценка липшицева типа: $$ \|f(A_1,B_1)-f(A_2,B_2)\|_{\mathbf{S}_p} \le \mathrm{const}\,\|f\|_{\text{Б}_{\infty,1}^1} \max\big\{ \|A_1 -A_2\|_{\mathbf{S}_p}, \|B_1 -B_2\|_{\mathbf{S}_p} \big\}. $$
Ключевые слова:
самосопряжённый оператор, классы Шаттена–фон Неймана, двойные операторные интегралы, тройные операторные интегралы, функции от пар некоммутирующих операторов.
Поступила в редакцию: 29.07.2022
Образец цитирования:
А. Б. Александров, В. В. Пеллер, “Функции от возмущëнных некоммутирующих неограниченных самосопряжëнных операторов”, Алгебра и анализ, 34:6 (2022), 34–54; St. Petersburg Math. J., 34:6 (2023), 913–927
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1836 https://www.mathnet.ru/rus/aa/v34/i6/p34
|
Статистика просмотров: |
Страница аннотации: | 168 | PDF полного текста: | 3 | Список литературы: | 30 | Первая страница: | 23 |
|