|
Алгебра и анализ, 2022, том 34, выпуск 2, страницы 231–239
(Mi aa1806)
|
|
|
|
Легкое чтение для профессионалов
On the least common multiple of several consecutive values of a polynomial
A. Dubickas Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
Аннотация:
In this note we prove the periodicity of an arithmetic function that is the quotient of the product of $k+1$ values (where $k \geq 1$) of a polynomial $f \in {\mathbb Z}[x]$ at $k + 1$ consecutive integers ${f(n) f(n + 1) \cdots f(n + k)}$ and the least common multiple of the corresponding integers ${f(n),f(n + 1),\dots,f(n + k)}$. We show that this function is periodic if and only if no difference between two roots of $f$ is a positive integer smaller than or equal to $k$. This implies an asymptotic formula for the least common multiple of $f(n),f(n+1),\dots,f(n+k)$ and extends some earlier results in this area from linear and quadratic polynomials $f$ to polynomials of arbitrary degree $d$. A period in terms of the reduced resultants of $f(x)$ and $f(x+\ell)$, where $1 \leq \ell \leq k$, is given explicitly, as well as few examples of $f$ when the smallest period can be established.
Ключевые слова:
least common multiple, reduced resultant, periodic arithmetic function.
Поступила в редакцию: 13.10.2019
Образец цитирования:
A. Dubickas, “On the least common multiple of several consecutive values of a polynomial”, Алгебра и анализ, 34:2 (2022), 231–239; St. Petersburg Math. J., 34:2 (2023), 305–311
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1806 https://www.mathnet.ru/rus/aa/v34/i2/p231
|
Статистика просмотров: |
Страница аннотации: | 103 | PDF полного текста: | 2 | Список литературы: | 30 | Первая страница: | 14 |
|