|
Алгебра и анализ, 2021, том 33, выпуск 5, страницы 193–206
(Mi aa1782)
|
|
|
|
Статьи
A new characterization of GCD domains of formal power series
A. Hamed Department of Mathematics, Faculty of Sciences, Monastir, Tunisia
Аннотация:
By using the $v$-operation, a new characterization for a power series ring to be a GCD domain is discussed. It is shown that if $D$ is a $\mathrm{UFD}$, then $D[\![X]\!]$ is a GCD domain if and only if for any two integral $v$-invertible $v$‑ideals $I$ and $J$ of $D[\![X]\!]$ such that $(IJ)_{0}\neq (0),$ we have $((IJ)_{0})_{v}$ $= ((IJ)_{v})_{0},$ where $I_0=\{f(0) \mid f\in I\}$. This shows that if $D$ is a GCD domain such that $D[\![X]\!]$ is a $\pi$-domain, then $D[\![X]\!]$ is a GCD domain.
Ключевые слова:
GCD domain, power series rings.
Поступила в редакцию: 15.10.2019
Образец цитирования:
A. Hamed, “A new characterization of GCD domains of formal power series”, Алгебра и анализ, 33:5 (2021), 193–206; St. Petersburg Math. J., 33:5 (2022), 879–889
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1782 https://www.mathnet.ru/rus/aa/v33/i5/p193
|
|