|
Алгебра и анализ, 2021, том 33, выпуск 4, страницы 173–209
(Mi aa1775)
|
|
|
|
Статьи
Do some nontrivial closed $z$-invariant subspaces have the division property?
J. Esterle IMB, UMR 5251, Université de Bordeaux 351, cours de la Libération, 33405 - Talence, France
Аннотация:
Banach spaces $E$ of functions holomorphic on the open unit disk $\mathbb{D}$ are considered such that the unilateral shift $S$ and the backward shift $T$ are bounded on $E$. Under the assumption that the spectra of $S$ and $T$ are equal to the closed unit disk, the existence is discussed of closed $z$-invariant subspaces $N$ of $E$ having the “division property,” which means that the function $f_{\lambda}\colon z \mapsto {f(z)\over z-\lambda}$ belongs to $N$ for every $\lambda \in \mathbb{D}$ and for every $f \in N$ with $f(\lambda)=0$. This question is related to the existence of nontrivial bi-invariant subspaces of Banach spaces of hyperfunctions on the unit circle $\mathbb{T}$.
Ключевые слова:
unilateral shift, backward shift, division property, invariant subspace, bi-invariant subspace.
Поступила в редакцию: 05.05.2020
Образец цитирования:
J. Esterle, “Do some nontrivial closed $z$-invariant subspaces have the division property?”, Алгебра и анализ, 33:4 (2021), 173–209; St. Petersburg Math. J., 33:4 (2022), 711–738
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1775 https://www.mathnet.ru/rus/aa/v33/i4/p173
|
|