|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Статьи
Projective free algebras of bounded holomorphic functions on infinitely connected domains
A. Brudnyi Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
Аннотация:
The algebra $H^\infty(D)$ of bounded holomorphic functions on $D\subset\mathbb C$ is projective free for a wide class of infinitely connected domains. In particular, for such $D$ every rectangular left-invertible matrix with entries in $H^\infty(D)$ can be extended in this class of matrices to an invertible square matrix. This follows from a new result on the structure of the maximal ideal space of $H^\infty(D)$ asserting that its covering dimension is $2$ and the second Čech cohomology group is trivial.
Ключевые слова:
Maximal ideal space, corona problem, projective free ring, Hermite ring, covering dimension, Čech cohomology.
Поступила в редакцию: 14.11.2019
Образец цитирования:
A. Brudnyi, “Projective free algebras of bounded holomorphic functions on infinitely connected domains”, Алгебра и анализ, 33:4 (2021), 49–65; St. Petersburg Math. J., 33:4 (2022), 619–631
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1769 https://www.mathnet.ru/rus/aa/v33/i4/p49
|
|