|
Алгебра и анализ, 2021, том 33, выпуск 2, страницы 197–214
(Mi aa1752)
|
|
|
|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
Статьи
Steady state non-Newtonian flow in thin tube structure: equation on the graph
G. Panasenkoab, K. Pileckasb, B. Vernescuc a University of Lyon, UJM, Institute Camille Jordan UMR CNRS 5208, 23 rue P. Michelon, 42023, Saint-Etienne, France
b Faculty of Mathematics and Informatics, Institute of Applied Mathematics, Vilnius University, Naugarduko Str., 24, Vilnius, 03225 Lithuania
c Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester MA01609, USA
Аннотация:
The dimension reduction for the viscous flows in thin tube structures leads to equations on the graph for the macroscopic pressure with Kirchhoff type junction conditions in the vertices. Nonlinear equations on the graph generated by the non-Newtonian rheology are treated here. The existence and uniqueness of a solution of this problem is proved. This solution describes the leading term of an asymptotic analysis of the stationary non-Newtonian fluid motion in a thin tube structure with no-slip boundary condition on the lateral boundary.
Ключевые слова:
non-Newtonian flow, strain rate dependent viscosity, asymptotic dimension reduction, quasi-Poiseuille flows, equation on the graph.
Поступила в редакцию: 09.11.2020
Образец цитирования:
G. Panasenko, K. Pileckas, B. Vernescu, “Steady state non-Newtonian flow in thin tube structure: equation on the graph”, Алгебра и анализ, 33:2 (2021), 197–214; St. Petersburg Math. J., 33:2 (2022), 327–340
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1752 https://www.mathnet.ru/rus/aa/v33/i2/p197
|
Статистика просмотров: |
Страница аннотации: | 188 | PDF полного текста: | 17 | Список литературы: | 32 | Первая страница: | 14 |
|