|
Алгебра и анализ, 2020, том 32, выпуск 4, страницы 200–216
(Mi aa1716)
|
|
|
|
Статьи
Limit model for the Vlasov–Maxwell system with strong magnetic fields via gyroaveraging
T. Kessler, S. Rjasanow FR Mathematik, Universität des Saarlandes, Postfach 15 11 50, D-66041 Saarbrücken
Аннотация:
This paper deals with the Vlasov–Maxwell system in the case of a strong magnetic field. After a physically motivated nondimensionalization of the original system, a Hilbert expansion is employed around a small parameter given as the product of the characteristic time scale and the gyrofrequency. From this, necessary conditions on the solvability of the reduced system are derived. An important aspect is the reduction of the six-dimensional phase space to five dimensions. In addition to the discussion of the partial differential equations, also initial and boundary conditions both for the full system and the limit model are studied.
Ключевые слова:
Vlasov–Maxwell system, strong magnetic field, gyrokinetics.
Поступила в редакцию: 28.05.2019
Образец цитирования:
T. Kessler, S. Rjasanow, “Limit model for the Vlasov–Maxwell system with strong magnetic fields via gyroaveraging”, Алгебра и анализ, 32:4 (2020), 200–216; St. Petersburg Math. J., 32:4 (2021), 753–765
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1716 https://www.mathnet.ru/rus/aa/v32/i4/p200
|
Статистика просмотров: |
Страница аннотации: | 138 | PDF полного текста: | 27 | Список литературы: | 35 | Первая страница: | 13 |
|