|
Алгебра и анализ, 2020, том 32, выпуск 3, страницы 180–190
(Mi aa1704)
|
|
|
|
Статьи
On a class of sharp multiplicative Hardy inequalities
D. Guzua, T. Hoffmann-Ostenhofb, A. Laptevca a Imperial College London, 180 Queen's Gate, London SW7 2AZ, UK
b University of Vienna
c St. Petersburg University, 14-ya Liniya V.O., 29B, 199178 St. Petersburg, Russia
Аннотация:
A class of weighted Hardy inequalities is treated. The sharp constants depend on the lowest eigenvalues of auxiliary Schrödinger operators on a sphere. In particular, for some block radial weights such sharp constants are given in terms of the lowest eigenvalue of a Legendre type equation.
Ключевые слова:
Schrödinger operators, Hardy inequalities.
Поступила в редакцию: 07.08.2019
Образец цитирования:
D. Guzu, T. Hoffmann-Ostenhof, A. Laptev, “On a class of sharp multiplicative Hardy inequalities”, Алгебра и анализ, 32:3 (2020), 180–190; St. Petersburg Math. J., 32:3 (2021), 523–530
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1704 https://www.mathnet.ru/rus/aa/v32/i3/p180
|
|