|
Алгебра и анализ, 2020, том 32, выпуск 3, страницы 127–148
(Mi aa1702)
|
|
|
|
Статьи
Existence theory for the EED inpainting problem
M. Bildhauer, M. Cárdenas, M. Fuchs, J. Weickert Saarland University, Faculty Math. and Computer Sci., 66041 Saarbrücken, Germany
Аннотация:
An existence theory is developed for an elliptic boundary value problem in image analysis known as edge-enhancing diffusion (EED) inpainting. The EED inpainting problem aims at restoration missing data in an image as the steady state of a nonlinear anisotropic diffusion process where the known data provide Dirichlet boundary conditions. The existence of a weak solution is established by applying the Leray–Schauder fixed point theorem, and it is shown that the set of all possible weak solutions is bounded. Moreover, it is demonstrated that under certain conditions the sequences resulting from iterative application of the operator from the existence theory contain convergent subsequences.
Ключевые слова:
boundary value problems, anisotropic diffusion, Leray–Schauder fixed point theorem, inpainting, image restoration, image compression.
Поступила в редакцию: 05.06.2019
Образец цитирования:
M. Bildhauer, M. Cárdenas, M. Fuchs, J. Weickert, “Existence theory for the EED inpainting problem”, Алгебра и анализ, 32:3 (2020), 127–148; St. Petersburg Math. J., 32:3 (2021), 481–497
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1702 https://www.mathnet.ru/rus/aa/v32/i3/p127
|
|