|
Статьи
Embeddings of Orlicz-Lorentz spaces into $ L_1$
[Embeddings of Orlicz–Lorentz spaces into $L_1$]
J. Prochno Institute of Mathematics & Scientific Computing, University of Graz, Heinrichstraße 36, 8010 Graz, Austria
Аннотация:
In this article, we show that the Orlicz–Lorentz spaces $\ell^n_{M,a}$, $n\in\mathbb{N}$ with Orlicz function $M$ and weight sequence $a$ are uniformly isomorphic to subspaces of $L_1$ if the norm $\|\,\cdot\,\|_{M,a}$ satisfies certain Hardy-type inequalities. This includes the embedding of some Lorentz spaces $\mathrm{d}^n(a,p)$. Our approach is based on combinatorial averaging techniques and we prove a new result of independent interest that relates suitable averages with Orlicz–Lorentz norms.
Ключевые слова:
Orlicz spaces, Lorentz spaces, Orlicz–Lorentz space, subspace of $L_1$, combinatorial inequality.
Поступила в редакцию: 15.05.2019
Образец цитирования:
J. Prochno, “Embeddings of Orlicz-Lorentz spaces into $ L_1$”, Алгебра и анализ, 32:1 (2020), 78–93; St. Petersburg Math. J., 32:1 (2021), 59–70
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1683 https://www.mathnet.ru/rus/aa/v32/i1/p78
|
Статистика просмотров: |
Страница аннотации: | 156 | PDF полного текста: | 24 | Список литературы: | 21 | Первая страница: | 6 |
|