|
Статьи
Cyclicity of nonvanishing functions in the polydisk and in the ball
E. Amara, P. J. Thomasb a Université de Bordeaux, 351 Cours de la Libération, Talence, France
b Université de Toulouse, UPS, INSA, UT1, UTM,
Institut de Mathématiques de Toulouse, F-31062 Toulouse, France
Аннотация:
A special version of the corona theorem in several variables,
valid when all but one of the data functions are smooth, is used to generalize to the polydisk and to the ball results obtained by El Fallah, Kellay, and Seip about the cyclicity of nonvanishing bounded holomorphic functions in sufficiently large
Banach spaces of analytic functions determined either by weighted sums of powers of Taylor coefficients
or by radially weighted integrals of powers of the modulus of the function.
Ключевые слова:
Hardy space, Bergman space, power series, cyclic function.
Поступила в редакцию: 25.07.2018
Образец цитирования:
E. Amar, P. J. Thomas, “Cyclicity of nonvanishing functions in the polydisk and in the ball”, Алгебра и анализ, 31:5 (2019), 1–23; St. Petersburg Math. J., 31:5 (2020), 751–768
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1667 https://www.mathnet.ru/rus/aa/v31/i5/p1
|
Статистика просмотров: |
Страница аннотации: | 178 | PDF полного текста: | 26 | Список литературы: | 22 | Первая страница: | 11 |
|