|
Алгебра и анализ, 2019, том 31, выпуск 3, страницы 136–153
(Mi aa1655)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Статьи
Sharp estimates for the gradient of solutions to the heat equation
G. Kresina, V. Maz'yabcd a Department of Mathematics Ariel University, Ariel 40700, Israel
b RUDN University, 6 Miklukho-Maklay St., 117198, Moscow, Russia
c Department of Mathematical Sciences, University of Liverpool, M&O Building, Liverpool, L69 3BX, UK
d Department of Mathematics, Linköping University, SE-58183 Linköping, Sweden
Аннотация:
Various sharp pointwise estimates for the gradient of solutions to the heat equation are obtained. The Dirichlet and Neumann conditions are prescribed on the boundary of a half-space. All data belong to the Lebesgue space $L^p$. Derivation of the coefficients is based on solving certain optimization problems with respect to a vector parameter inside of an integral over the unit sphere.
Ключевые слова:
heat equation, sharp pointwise estimates for the gradient, first and second boundary value problems.
Поступила в редакцию: 06.06.2018
Образец цитирования:
G. Kresin, V. Maz'ya, “Sharp estimates for the gradient of solutions to the heat equation”, Алгебра и анализ, 31:3 (2019), 136–153; St. Petersburg Math. J., 31:3 (2020), 495–507
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1655 https://www.mathnet.ru/rus/aa/v31/i3/p136
|
Статистика просмотров: |
Страница аннотации: | 224 | PDF полного текста: | 37 | Список литературы: | 30 | Первая страница: | 10 |
|