|
Обзоры
On the defect of compactness in Sobolev embeddings on Riemannian manifolds
C. Tintarev Sankt Olofsgatan 66B, 75330 Uppsala, Sweden
Аннотация:
The defect of compactness for an embedding $E\hookrightarrow F$ of two Banach spaces is the difference between a weakly convergent sequence in $E$ and its weak limit, taken modulo terms vanishing in $F$. We discuss the structure of the defect of compactness for (noncompact) Sobolev embeddings on manifolds, giving a brief outline of the theory based on isometry groups, followed by a summary of recent
studies of the structure of bounded sequences without invariance assumptions.
Ключевые слова:
concentration compactness, profile decomposition, weak convergence, Sobolev spaces on manifolds.
Поступила в редакцию: 30.08.2018
Образец цитирования:
C. Tintarev, “On the defect of compactness in Sobolev embeddings on Riemannian manifolds”, Алгебра и анализ, 31:3 (2019), 36–54; St. Petersburg Math. J., 31:3 (2020), 421–434
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1651 https://www.mathnet.ru/rus/aa/v31/i3/p36
|
Статистика просмотров: |
Страница аннотации: | 186 | PDF полного текста: | 30 | Список литературы: | 33 | Первая страница: | 10 |
|