|
Алгебра и анализ, 2019, том 31, выпуск 2, страницы 174–188
(Mi aa1642)
|
|
|
|
Статьи
Bounded point derivations on certain function spaces
J. E. Brennan Department of Mathematics, University of Kentucky, Lexington, KY 40506, USA
Аннотация:
Let $ X$ be a compact nowhere dense subset of the complex plane $ \mathbb{C}$, and let $ dA$ denote two-dimensional Lebesgue (or area) measure in $ \mathbb{C}$. Denote by $ \mathcal {R}(X)$ the set of all rational functions having no poles on $ X$, and by $ R^p(X)$ the closure of $ \mathcal {R}(X)$ in $ L^p(X,dA)$ whenever $ 1\leq p<\infty $. The purpose of this paper is to study the relationship between bounded derivations on $ R^p(X)$ and the existence of approximate derivatives provided $ 2<p<\infty $, and to draw attention to an anomaly that occurs when $ p=2$.
Ключевые слова:
point derivation, approximate derivative, monogeneity, capacity.
Поступила в редакцию: 13.11.2018
Образец цитирования:
J. E. Brennan, “Bounded point derivations on certain function spaces”, Алгебра и анализ, 31:2 (2019), 174–188; St. Petersburg Math. J., 31:2 (2019), 313–323
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1642 https://www.mathnet.ru/rus/aa/v31/i2/p174
|
Статистика просмотров: |
Страница аннотации: | 213 | PDF полного текста: | 23 | Список литературы: | 52 | Первая страница: | 13 |
|