|
Эта публикация цитируется в 11 научных статьях (всего в 11 статьях)
Статьи
Spectral theory of rank one perturbations of normal compact operators
A. D. Baranovab a Department of Mathematics and Mechanics, St. Petersburg State University, St. Petersburg, Russia
b National Research University Higher School of Economics, St. Petersburg, Russia
Аннотация:
A functional model is constructed for rank one perturbations of compact normal operators that act in a certain Hilbert spaces of entire functions generalizing the de Branges spaces. By using this model, completeness and spectral synthesis problems are studied for such perturbations. Previously, the spectral theory of rank one perturbations was developed in the selfadjoint case by D. Yakubovich and the author. In the present paper, most of known results in the area are extended and simplified significantly. Also, an ordering theorem for invariant subspaces with common spectral part is proved. This result is new even for rank one perturbations of compact selfadjoint operators.
Ключевые слова:
spectral synthesis, nonvanishing moments, domination, completeness, spectrum, invariant subspace, functional model.
Поступила в редакцию: 15.03.2018
Образец цитирования:
A. D. Baranov, “Spectral theory of rank one perturbations of normal compact operators”, Алгебра и анализ, 30:5 (2018), 1–56; St. Petersburg Math. J., 30:5 (2019), 761–802
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1613 https://www.mathnet.ru/rus/aa/v30/i5/p1
|
Статистика просмотров: |
Страница аннотации: | 513 | PDF полного текста: | 61 | Список литературы: | 66 | Первая страница: | 37 |
|