|
Алгебра и анализ, 2018, том 30, выпуск 3, страницы 286–310
(Mi aa1605)
|
|
|
|
Статьи
A new representation of Hankel operators and its spectral consequences
D. R. Yafaevab a Univ Rennes, CNRS, IRMAR-UMR 6625, F-35000 Rennes, France
b St. Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russia
Аннотация:
In the paper, the Hankel operators $H$ are represented as pseudo-differential operators $A$ in the space of functions defined on the whole axis. The amplitudes of such operators $A$ have a very special structure: they are products of functions of a one variable only. This representation has numerous spectral consequences, both for compact Hankel operators and for operators with the continuous spectrum.
Ключевые слова:
Hankel operators, spectral properties, absolutely continuous and discrete spectra, asymptotics of eigenvalues.
Поступила в редакцию: 12.12.2017
Образец цитирования:
D. R. Yafaev, “A new representation of Hankel operators and its spectral consequences”, Алгебра и анализ, 30:3 (2018), 286–310; St. Petersburg Math. J., 30:3 (2019), 601–619
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1605 https://www.mathnet.ru/rus/aa/v30/i3/p286
|
Статистика просмотров: |
Страница аннотации: | 198 | PDF полного текста: | 24 | Список литературы: | 30 | Первая страница: | 13 |
|