|
Алгебра и анализ, 2017, том 29, выпуск 2, страницы 242–273
(Mi aa1541)
|
|
|
|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
Статьи
Passage through a potential barrier and multiple wells
D. R. Yafaevab a IRMAR, Université de Rennes I, Campus de Beaulieu, Rennes, 35042, France
b St. Petersburg State University, Univ. Nab., 7/9, 199034, St. Petersburg, Russia
Аннотация:
The semiclassical limit as the Planck constant $\hbar$ tends to $0$ is considered for bound states of a one-dimensional quantum particle in multiple potential wells separated by barriers. It is shown that, for each eigenvalue of the Schrödinger operator, the Bohr–Sommerfeld quantization condition is satisfied for at least one potential well. The proof of this result relies on a study of real wave functions in a neighborhood of a potential barrier. It is shown that, at least from one side, the barrier fixes the phase of the wave functions in the same way as a potential barrier of infinite width. On the other hand, it turns out that for each well there exists an eigenvalue in a small neighborhood of every point satisfying the Bohr–Sommerfeld condition.
Ключевые слова:
Schrödinger equation, multiple potential wells, Bohr–Sommerfeld quantization conditions, fixing conditions.
Поступила в редакцию: 15.10.2016
Образец цитирования:
D. R. Yafaev, “Passage through a potential barrier and multiple wells”, Алгебра и анализ, 29:2 (2017), 242–273; St. Petersburg Math. J., 29:2 (2018), 399–422
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1541 https://www.mathnet.ru/rus/aa/v29/i2/p242
|
Статистика просмотров: |
Страница аннотации: | 299 | PDF полного текста: | 52 | Список литературы: | 72 | Первая страница: | 16 |
|