|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Статьи
Dessins d'enfants and differential equations
F. Lárussona, T. Sadykovb a School of Mathematical Sciences, University of Adelaide, Adelaide SA, Australia
b Department of Mathematics and Computer Science, Siberian Federal University, Krasnoyarsk
Аннотация:
A discrete version of the classical Riemann–Hilbert problem is stated and solved. In particular, a Riemann–Hilbert problem is associated with every dessin d'enfants. It is shown how to compute the solution for a dessin that is a tree. This amounts to finding a Fuchsian differential equation satisfied by the local inverses of a Shabat polynomial. A universal annihilating operator for the inverses of a generic polynomial is produced. A classification is given for the plane trees that have a representation by Möbius transformations and for those that have a linear representation of dimension at most two. This yields an analogue for trees of Schwarz's classical list, that is, a list of the plane trees whose Riemann–Hilbert problem has a hypergeometric solution of order at most two.
Ключевые слова:
Riemann–Hilbert problem, Fuchsian equation, dessins d'enfants.
Поступила в редакцию: 31.10.2006
Образец цитирования:
F. Lárusson, T. Sadykov, “Dessins d'enfants and differential equations”, Алгебра и анализ, 19:6 (2007), 184–199; St. Petersburg Math. J., 19:6 (2008), 1003–1014
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa152 https://www.mathnet.ru/rus/aa/v19/i6/p184
|
|